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The Sequence-to-sequence Model

•Encoder-Decoder Framework

• Encoder:  encode the source into representations

•Decoder:  decode the representation into the target
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Main Models

3TransformerRNNSearch



Training

•Teacher Forcing
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Loss: 

MLE
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Ground Truth:     How  should  I  deal       with  this  issue ?

Output:               How  should I  process  this   issue ?
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Output:               How  should I  process  this   issue ?
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Exposure Bias

Professor Forcing RL-based Training Differentiable LossScheduled Sampling

Word-level Matching

The Model

12Zhang et al., ACL 2019



Exposure Bias

Professor Forcing RL-based Training Differentiable LossScheduled Sampling

Word-level Matching

Key parts

•How to generate oracle translation

•How to sample context

•How to train the model

13Zhang et al., ACL 2019
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Professor Forcing RL-based Training Differentiable LossScheduled Sampling
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Oracle Translation Generation

•Word-level Oracle (WO)

•Sentence-level Oracle (SO)

14Zhang et al., ACL 2019



Exposure Bias

Professor Forcing RL-based Training Differentiable LossScheduled Sampling

Word-level Matching

The RNNSearch Model

15Zhang et al., ACL 2019



Exposure Bias

Professor Forcing RL-based Training Differentiable LossScheduled Sampling

Word-level Matching

Oracle Translation Generation

•Word Oracle
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Exposure Bias

Professor Forcing RL-based Training Differentiable LossScheduled Sampling

Word-level Matching

Oracle Translation Generation

•Sentence Oracle

•Generate top-k translations by beam search

•Rerank the top-k translation with BLEU

• Select the top 

17Zhang et al., ACL 2019
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Scheduled Sampling with Decay
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where

epoch number

Zhang et al., ACL 2019
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Training

•Teacher Forcing + MLE

19Zhang et al., ACL 2019
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2 Word-level Matching

2.1 RL-based Training

2.2 Differentiable Loss

1 Exposure Bias

1.2 Professor Forcing

1.1 Scheduled Sampling
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Generator

Goyal et al., ICLR 2016
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RL-based Training

Discriminator

22

…
s1 s2 sJ

Free Running
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Teacher Forcing
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Goyal et al., ICLR 2016
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Professor Forcing Differentiable LossScheduled Sampling
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RL-based Training

Training

•Adversarial training in the GAN style
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Generator

Goyal et al., ICLR 2016
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RL-based Training

Loss for Discriminator

24Goyal et al., ICLR 2016
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Loss for Generator
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Conventional Loss:

Losses to fool the discriminator:

Goyal et al., ICLR 2016
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Professor Forcing RL-based Training Differentiable LossScheduled Sampling

Word-level Matching

Framework
• Generator

• A sequence model

• Sequence-level Reward

• BLEU, GLEU, etc

• A score from a Discriminator

• Training strategy

• Policy Gradient

• Actor-Critic

27Yu et al., AAAI 2017
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SeqGAN

28Yu et al., AAAI 2017
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Discriminator

29

CNN D�(Y )]

y1

y2

yJ

Yu et al., AAAI 2017

...



Exposure Bias

Professor Forcing RL-based Training Differentiable LossScheduled Sampling

Word-level Matching

Training

•Loss for discriminator:

•Loss for generator:
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Policy Gradient

Yu et al., AAAI 2017
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Professor Forcing RL-based Training Differentiable LossScheduled Sampling

Word-level Matching

Differentiable Sequence-level Loss

•Loss: 

•N-gram-based, e.g., BLEU, GLEU, etc

•Probabilistic n-gram precision

32Shao et al., EMNLP 2018



Exposure Bias

Professor Forcing RL-based Training Differentiable LossScheduled Sampling

Word-level Matching

Probabilistic N-gram Accuracy: A 3-gram example

• The probabilistic count of 3-gram “How should I”:    0.6 * 0.7 * 0.9 = 0.378

• The probabilistic count of 3-gram “this issue ?”:        0.7 * 0.9 * 0.5 = 0.315

• The total probabilistic count of 3-grams : 1.107

• Precision of 3-gram: 

33Shao et al., EMNLP 2018
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Training

•A 2-gram example

34Shao et al., EMNLP 2018
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Training

•A 2-gram example
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Greedy Search

P-BLEU

SGD

Shao et al., EMNLP 2018
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Thanks for your attention!
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